
October 2017, Volume 4, Issue 10 JETIR (ISSN-2349-5162)

JETIR1710004 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 32

SIGNIFICANT HASH-BASED METHODS FOR

REDUCING THE TIME COMPLEXITY IN XML

KEYWORD SEARCH
1
SREERAMULA SANTHOSH,

2
Mr.N. NAVEEN KUMAR

1
M. Tech Student, Department of CS, School of Information Technology (JNTUH), Mandal Kukatpally, District Medchal, Telangana, India

2
Assistant Professor, Department of CS, School of Information Technology (JNTUH), Mandal Kukatpally, District Medchal, Telangana, India

ABSTRACT─ Typically, an XML document can be modeled as a node labeled tree. For a given keyword query, several semantics have been

proposed to define meaningful results, for which the basic semantics is Lowest Common Ancestor. Existing methods are not solved the

common-ancestor-repetition (CAR) and visiting-useless-nodes (VUN) problems. In this paper, we propose a generic top-down processing

strategy to resolve the common-ancestor-repetition problem and also we propose to use child nodes, rather than descendant nodes to test the

satisfiability of a node with respect to the given semantics to address the Visiting-Useless-Nodes. Through these two proposed strategies, we

can improve the overall search performance.

Keywords: XML keyword, Common Ancestor

1. INTRODUCTION

 Adapting key-word search to XML records has been attractive lately, generalized as XML key-word search (XKS). One of its key duties is to

return the meaningful fragments as the end result. The ultra-modern paintings following this fashion and it focus on returning the fragments

rooted at SLCA (Smallest LCA – Lowest Common Ancestor) nodes. To assure that the fragments simplest include exciting nodes, proposes a

contributor-based filtering mechanism in its Max Match set of rules. However, the filtering mechanism isn't sufficient. It will devote the fake

superb hassle (discarding thrilling nodes) and the redundancy trouble (maintaining uninteresting nodes). One of its key responsibilities is to

return the meaningful fragments as the result. One of the contemporary work following this fashion, and it focuses on returning the fragments

rooted at SLCA (Smallest LCA – Lowest Common Ancestor) nodes.

Fig1. Example XML Document

 To assure that the fragments handiest incorporate interesting nodes, proposes a contributor-based filtering mechanism in its Max Match

algorithm. However, the filtering mechanism isn't enough. It will devote the fake tremendous problem (discarding exciting nodes) and the

redundancy trouble (retaining uninteresting nodes). In this paper, our hobby is to advise a framework of retrieving meaningful fragments rooted

at no longer simplest the SLCA nodes, but all LCA nodes. The intense success of Web Search Engines makes Keyword Search the maximum

popular search version for regular users. As XML is turning into a popular in records illustration, it is appropriate to assist key-word search in

XML database. It is a consumer pleasant way to query XML databases because it lets in users to pose queries without the expertise of complex

question languages and the database schema. XML key-word search exploit the facts of underlying XML database to deal with Search Intention

Identification, Result Retrieval, and Relevance Oriented Ranking as a single trouble. For this mixture a novel IR style approach is proposed to

captures XML’s hierarchical structure, and works well on natural key-word query impartial of any schema data of XML records. A search engine

prototype referred to as XReal is implemented to reap powerful identity of user search purpose and relevance oriented ranking for the quest

outcomes inside the presence of key-word ambiguities. Thus XReal may additionally introduce solutions which are either;

 In conventional keyword-search device over XML information, a consumer composes a key-word question; put up it to device and retrieves

facts. Actually particular individual realize about language what is Xpath and Xquery, what are their syntax, notation and so forth due to the fact

without syntax, nobody can retrieve data, Xquery and this paper, we examine powerful search in XML information, system search XML

information on the consumer kind in query key phrases. It permit user to explore records as they kind, even in presence of teen errors in their

October 2017, Volume 4, Issue 10 JETIR (ISSN-2349-5162)

JETIR1710004 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 33

key-word. We advocate effective index structures and top-ok set of rules to gain a high interactive velocity. We examine effective ranking

function and early termination strategies to progressively identify the top-k relevant answer

 Keyword search in XML files based totally on the perception of lowest commonplace ancestors within the categorized bushes modeled after

the XML files has lately gained studies interest in the database community. One crucial feature of keyword search is that it allows customers to

go looking data without having to realize a complicated query language or previous understanding about the structure of the underlying statistics.

For XML statistics, where the data is considered as a hierarchically-based rooted tree, a herbal keyword search semantics is to go back all of the

nodes in XML tree that incorporate all the key phrases of their sub timber. However, this simple search semantics can bring about returning too

many records nodes, a lot of which are handiest remotely related to the nodes containing the keywords. A recent path to enhance the

effectiveness of keyword search in XML statistics is based totally on the belief of smallest lowest.

2. RELATED WORK

 Yu Xu and Yannis Papakonstantinou provided an efficient keyword search algorithm, named Indexed Stack that returns nodes that

incorporate all instances of all keywords in the query, after excluding the keyword times that seem underneath nodes whose children already

comprise all keyword times in step with the question semantics proposed. We confirmed the prevalence of the Indexed Stack set of rules over

DIL and RDIL each analytically and experimentally. We confirmed Sin which ok is the range of key phrases in the question, d is the

intensityS1occurrence of the least (maximum) frequent keyword within the query. In contrast, the complexity of the pleasant previous paintings

set of rules is O (kdtrouble of reasoning approximately XML keyword search algorithms. We take an axiomatic technique and feature recognized

the properties that an XML keyword search set of rules must preferably own in figuring out relevant fits to key phrases. Monotonicity states that

facts insertion (query key-word insertion) reasons the range of query effects to non-strictly monotonically increase (decrease). Consistency states

that after data (query key-word) insertion, if an XML subtree turns into legitimate to be a part of new question consequences, then it must contain

the brand new statistics node (a in shape to the new question key-word). They had shown that those homes are non-trivial, non-redundant, and

satisfiable. To the first-class of our understanding, that is the primary work that introduces homes to characterize affordable behaviors of

determining relevant suits for XML key-word search. We have proposed MaxMatch, a unique semantics for figuring out relevant matches and an

efficient algorithm to understand this semantics, which is the most effective acknowledged algorithm that satisfies all houses. Experimental

studies have proven the instinct of the houses and shown the effectiveness of our technique. MaxMatch is integrated as a part of the XSearch

machine for XML keyword search, which intelligently identifies no longer most effective relevant suits to keywords but also applicable nodes

that do not fit keywords as question results.

 JDewey-E computes ELCA consequences via performing set intersection operation on all lists tree intensity from the leaf to the basis. For all

lists of each level, after finding the set of commonplace nodes, it desires to recursively delete all ancestor nodes in all lists of higher degrees. As a

node may be a figure node of many other CA nodes, and the deletion operation needs to method each parent-baby dating one at a time, JDewey-

E suffers from the CAR problem.

3. FRAMEWORK

A. Overview of the Proposed Framework

 Considering the CAR and VUN problems, we propose to support different query semantics with a generic processing strategy, which is more

efficient by avoiding both the CAR and VUN problems, such that to further reduce the number of visited components. To address the CAR

problem, we propose a generic top-down XML keyword query processing strategy. To address the VUN problem, we propose to use child nodes,

rather than descendant nodes, to test the satisfiability of node v with respect to xLCA semantics. We propose a labeling-scheme-independent

inverted index, namely LList, which maintains every node in each level of a traditional inverted list only once and keeps all necessary

information for answering a given keyword query without any loss.

B. Finding Lowest Common Ancestors

 We don’t care what kind of bushes we've. However the answer, as we can see, may be very specific depending at the tree kind. Indeed

locating the bottom common ancestor could have linear complexity for binary search timber, which isn’t genuine for ordinary bushes. Overview

let’s say we've got a tree (now not binary!) and two nodes from this tree. The mission is to locate their lowest common ancestor. The issue is that

we don’t understand tons approximately in which they look like inside the tree. It isn't binary or balanced and may’t makes certain in which these

nodes are.

Fig2. Example for Lowest Common Ancestors

 First we need to find both paths from the foundation to every one of the goal nodes. Note that this calls for additional reminiscence! Then, in

linear time we can skip thru these “paths” and experiment them from the foundation all the way down to the nodes. We expect these to arrays to

be same at least of their first element (the basis). Using this scenario the bottom common ancestor is the ultimate identical detail in each array.

October 2017, Volume 4, Issue 10 JETIR (ISSN-2349-5162)

JETIR1710004 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 34

C. LList

 We advocate a labeling-scheme-independent inverted index, namely LList, which keeps every node in every stage of a traditional inverted list

most effective as soon as and keeps all essential information for answering a given key-word query without any loss. Based on LLists, our 2nd

top-down set of rules, specifically TDxLCA-L, in addition reduces the time complexity.

4. EXPERIMENTAL RESULTS

 In our experiment, we took the DBLP dataset as XML document. In our system first we need to upload the DBLP dataset. After the

uploading, we can apply the parsing method on the XML document. To that uploaded dataset we can generate the inverted index.

 We can perform the TDELCA and TDELCA-H algorithms to search a XML keyword. Finally, we can get the searched results.

 After getting the results we can view the comparison chart of the both TDELCA algorithm and TDELCA-H algorithm.

5. CONCLUSION

 In this paper we proposed two efficient algorithms that are based on either traditional inverted lists or our newly proposed LLists to improve

the overall performance. Mainly, in this paper we considered two problems such as Common-Ancestor-Repetition (CAR) problem and Visiting

Useless Nodes (VUN) problem. And we also solved these two problems by implementing two algorithms named as TDELCA and TDELCA-H

algorithms.

REFERENCES

[1] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “XSEarch: A semantic search engine for XML,” in Proc. 29th Int. Conf. Very Large Data

Bases, 2003, pp. 45–56.

[2] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, “Xrank: Ranked keyword search over XML documents,” in Proc. ACM SIGMOD

Int. Conf. Manage. Data, 2003, pp. 16–27.

[3] Y. Xu and Y. Papakonstantinou, “Efficient LCA based keyword search in XML data,” in Proc. 11th Int. Conf. Extending Database Techn.:

Adv. Database Technol., 2008, pp. 535–546.

[4] R. Zhou, C. Liu, and J. Li, “Fast ELCA computation for keyword queries on XML data,” in Proc. 13th Int. Conf. Extending Database

Technol., 2010, pp. 549–560.

[5] Y. Xu and Y. Papakonstantinou, “Efficient keyword search for smallest LCAS in XML databases,” in Proc. ACM SIGMOD Int. Conf.

Manage. Data, 2005, pp. 537–538.

[6] Y. Li, C. Yu, and H. V. Jagadish, “Schema-free xquery,” in Proc. 13th Int. Conf. Very Large Data Bases, 2004, pp. 72–83.

[7] L. J. Chen and Y. Papakonstantinou, “Supporting top-K keyword search in XML databases,” in Proc. 26th Int. Conf. Data Eng., 2010, pp.

689–700.

[8] C. Sun, C. Y. Chan, and A. K. Goenka, “Multiway SLCA-based keyword search in XML data,” in Proc. 16th Int. Conf. World Wide Web,

2007, pp. 1043–1052.

[9] Z. Liu and Y. Chen, “Reasoning and identifying relevant matches for XML keyword search,” J. Proc. Very Large Data Bases Endowment,

vol. 1, no. 1, pp. 921–932, 2008.

[10] G. Li, J. Feng, J. Wang, and L. Zhou, “Effective keyword search for valuable LCAS over XML documents,” in Proc. 16th ACM Conf. Conf.

Inform. Knowl. Manage., 2007, pp. 31–40.

